
UDEBUG - Application Debugging
The Com-plete Application Debugger UDEBUG assists you in locating problem areas within an
application and, where applicable, enables you to bypass a specific problem temporarily by altering
various parts of the program’s environment, such as storage contents, register contents or the actual
program code itself.

Highlights of UDEBUG functionality include:

Stop programs at specific points in their execution

Alter storage

Give instruction steps

Trace MCALL

Disassemble assembler code (not yet implemented)

Modify assembler code (not yet implemented)

Full screen conversational interface

Powerful DSECT display facilities

This chapter covers the following topics:

Overview

Restrictions on the use of UDEBUG

UDEBUG User Interface

UDEBUG Commands

Overview
What follows is a description of the terms associated with UDEBUG, followed by a description of how to
use UDEBUG.

The UDEBUG Session

The UDEBUG session is simply the running of the program UDEBUG on a terminal
attached to Com-plete. UDEBUG itself is a Com-plete application program with the
ability to set dynamic hooks into another Com-plete application. In the case of a
COM-PASS user, it must run as one of the user levels, in which case the application to
be debugged may run on a different level or even a different terminal. In the case of a
non-COM-PASS user, only one program may be run at a time. In this case, UDEBUG is
this program and can only test an application to be debugged on a different terminal.

1

UDEBUG - Application DebuggingUDEBUG - Application Debugging

The Debugger

The Debugger is the session which is debugging an application program.

The Testing Terminal

The Testing Terminal is the terminal running the UDEBUG session. If the Testing
Terminal is running COM-PASS, then there can be more than one UDEBUG session
active on different levels. These different sessions can have their own individual Test
Terminals and/or Test Levels.

The Test Terminal

The Test Terminal is the terminal running the program being debugged. A terminal can
only be a Test Terminal for one UDEBUG user, even if the Test Terminal is running
COM-PASS. However, if the Test Terminal is running COM-PASS, the Testing
Terminal can test on more than one level. This simply requires that the Testing Terminal
have a UDEBUG session active for each of the levels on the Test Terminal which are to
be debugged.

The Test Level

The Test Level is the level running the program to be debugged. Only one debug session
can be active on a particular Test Level at a time. When the Debugger is running
COM-PASS and the Testing and Test Terminals are the same, the Test Level can be any
level on the terminal except the level upon which the Debugger is running and level 0. If
the Test and Testing Terminals are different, the Test Level can be any valid level for the
Test Terminal. If the session with the program being debugged is not running
COM-PASS, then the test level must be zero.

The Test Session

The Test Session is the Test Terminal / Level combination where testing is or will take
place.

Breakpoints

A breakpoint is a point in a program’s execution at which the program should be stopped
to enable the Debugger to determine what the status of the program’s operating
environment is. At this point, the Debugger can change the program’s environment,
change the program itself or change the logical flow of the program.

UDEBUG Breakpoints

As stated previously, UDEBUG enables the user to stop the application program at
certain points in the coding. This is done by setting breakpoints in the code. When a
breakpoint is set at a certain point in the code, the Debugger receives control
immediately before the instruction on which the breakpoint is set is executed. At this
point, you can check the environment at the point at which the code was stopped and
alter storage or the actual code before the code is executed. You can also restart the
program being debugged at another address.

2

OverviewUDEBUG - Application Debugging

Breakpoints can be set to execute a certain number of times before giving control to the
Debugger, and can also be set to stop giving control to the Debugger after it has been executed a certain
number of times. They can be set in RESIDENTPAGE programs and in programs which are in the thread
or will be loaded into the thread at some point in the execution of the program being debugged.

A breakpoint always has an owning TID/LEVEL combination and a Test TID/LEVEL
combination. The owning combination identifies who set the breakpoint while the Test Combination
identifies for which terminal/level combination the breakpoint has been set that is, the Test Terminal and
the Test Level. If the program being debugged terminates for any reason, the breakpoints set by the
Debugger will remain intact. If the Debugger terminates for any reason, the breakpoints are either deleted,
or, if this is nmot possible, flagged for later deletion. Any user running on anything other than the Test
Terminal Level combination who reaches the breakpoint is dispatched normally, though with extra CPU

overhead to bypass the breakpoint.

When one or more breakpoints have been set, the Test Terminal and Level for that
UDEBUG session will be unmodifiable until all the breakpoints are again deleted. The Debugger can then

change the Test Terminal and/or the Test Level.

Warning About Breakpoints

Basically, the only way it can be known that a piece of storage will be executed is when
the area of storage is fetched by instruction fetch processing. This applies even if the area is not even a
valid instruction. Rather than restrict where a breakpoint may be set, UDEBUG simply ensures that the
address where a breakpoint will be set is halfword aligned. This can conceivably cause problems, for
example, if a breakpoint was set on the "to" address of an MVC instruction, it would change the location
to where the MVC would take place. This will at best cause a storage exception or at worst, it will cause
writing to an unknown storage area and enable the program to continue processing as if a certain piece of
storage has been set. For this reason, care must be taken when a breakpoint is set to ensure that the
breakpoint does not corrupt the program being tested.

Implicit Breakpoints

As stated previously, the user can set points in the program at which the program should
stop. These are explicit breakpoints. We speak of implicit breakpoints when you have
requested a function of UDEBUG which requires the program to be stopped at a specific
point.

Currently, an implicit breakpoint is set for the following UDEBUG functions:

Instruction Tracing

MCALL tracing

Generally speaking, the implicit breakpoint only exists when the breakpoint is required,
and it is deleted when the debugged program comes off the breakpoint. This means that,
for example, during MCALL tracing, when the program issues a MCALL, an implicit
breakpoint is set, causing the Debugger to get control. When the program is next
dispatched and comes off the breakpoint, the breakpoint is deleted.

Breakpoints in Storage

It is also possible to set a breakpoint in storage obtained by an application program in the
thread. This facility is available for high level language compilers that provide a trace
function which simply branches to a storage area, in which there is simply a branch
back. Another reason could be to enable the debugger to restart a program after a wild

3

UDEBUG - Application DebuggingOverview

branch. This type of breakpoint must be set with care and the following should be noted
carefully:

The breakpoint can only be set in an area which has been getmained in the
thread. An attempt to set a breakpoint in a free area of the thread results in the
breakpoint being flagged as invalid.

Please be aware that setting a breakpoint in a storage area requires moving an
SVC instruction to this location, overwriting the contents of the area for two
bytes. By the same token, when the breakpoint is removed, the "instruction"
moved from this area is moved back to leave the area in the state in which
UDEBUG found it.

It is your responsibility to ensure that the location the breakpoint is set is not
altered while the breakpoint is active. If this occurs, the UDEBUG breakpoint
SVC is deleted and therefore the breakpoint has no effect.

When the Test Program terminates, any breakpoints that are set in storage are
flagged as "Dormant". This means that the control block identifying the
breakpoint is still there, but,the breakpoint is not set until the Debugger
reactivates the breakpoint by issuing the AT command. This is to ensure that the
test program can get the storage and build the environment before UDEBUG
attempts to set the breakpoint again.

Redispatching a Breakpointed Program

When a program being debugged is on a breakpoint, if the Test and Testing Terminals
are not the same, the only way to restart a breakpointed program is by issuing the
UDEBUG command GO. However, if the Test and Testing Terminals are the same, you
can issue the GO command or, if you have stacked the UDEBUG session, you can
simply restart the program by using any of the commands from the COM-PASS screen
to select the suspended Test Level.

MCALL Tracing

When MCALL tracing is active for a Test Session, when the program being debugged is
about to execute an MCALL, the Debugger is given control. That is to say that the
Debugger is given control BEFORE the MCALL is executed, giving the Debugger the
chance to change the parameter options or even to bypass the MCALL altogether. Please
note that when MCALL tracing is active, ANY program running on the Test Session will
cause control to be passed to the Debugger when a MCALL is issued.

Instruction Tracing

Instruction tracing enables the Debugger to step through a program instruction by
instruction. That is to say that once instruction tracing is activated, the Debugger gets
control prior to the execution of every assembler instruction. As this is simply an
implicit breakpoint, you can make any changes during an instruction trace which can be
made at an explicitely defined breakpoint.

4

OverviewUDEBUG - Application Debugging

Instruction tracing can be active with no effect. That means that the Debugger may have
set the option for the Test Session, but nothing happens. This is because instruction tracing can only be
effected when the program to be debugged has terminated at a breakpoint, be it implicit or explicit. The
UDEBUG code checks when coming off the breakpoint if the option is set or not. When it is set, it is then

activated for the next instruction after the breakpoint.

The instruction tracing can only go as far as tracing within application programs. This
means, that if the application issues a SVC call or an internal Com-plete nucleus call, this cannot be
traced, as breakpoints cannot be set in these places. In these cases, UDEBUG sets the next "instruction
trace" breakpoint at the instruction following the instruction that cannot be followed.

UDEBUG Symbols

To make programs more meaningful, various sysmbols or labels can be defined. In the
same way, to make certain addresses and displays more meaningful in a UDEBUG test
environment, symbols can be set in various ways. During the following description,
reference is made to level 1, 2 and 3 symbols. How these categories related to UDEBUG
is described later.

Standard Equates

A user can set up equates within a session using the EQUATE command (described
later). This command enables an eight character identifier to be set to a particular
address in storage. When this equate is later referenced alone or within an expression,
UDEBUG uses the address to which the identifier was equated to resolve the request. An
equate can also be given a length so that during disassembly or when listing the equate,
UDEBUG "knows" the length the data that the equate describes. In UDEBUG terms, an
equate is a level 1 type symbol.

Load Module Equates

Many load modules consist of more than one CSECT which can cause them to be very
large. In any case, working with a linked module can be tiresome given the fact that
initially, only the actual module name will be known. UDEBUG enables you to "know"
each of the CSECT within a linked module, so that when the load module name is
resolved, you can reference the various CSECTS within the module directly. This is
achieved by using the LMODULE command (described later). This causes the load
module to be read from a specified load library and an internal equate set up for each of
the CSECTS within the load module.

The CSECT equates are set up relative to the start of the actual load module, so once the
load module is not relinked, it can be loaded anywhere and UDEBUG succeeds in
addressing the various CSECTs correctly. This is particularly useful in the case of a
relocatable load module. In UDEBUG terms, the load module name which is loaded is a
level 1 symbol, while the actual CSECT equates themselves are level 2 symbols.

Testran Defined Symbols

Current assemblers running under MVS enable you to produce what is called "testran"
records. These records describe each of the various DSECTs and CSECTs that exist
within a module and the various labels within the DSECT or CSECT. UDEBUG can
read the testran symbols using the READ command (described later). The member name
being read becomes a UDEBUG level 1 symbol, while each DSECT or CSECT becomes

5

UDEBUG - Application DebuggingOverview

a UDEBUG level 2 symbol. The fields defined within a DSECT or CSECT then become
UDEBUG level 3 symbols.

The symbols defined as a result of the READ command can then be used to see the
structure of DSECTS and/or CSECTS including field names, lengths and offsets. When a particular
CSECT or DSECT is resolved, the contents of the various fields can also be seen. Resolution of CSECTS

and DSECTS is discussed later.

Local and Global Symbols

The number of symbols you wish to define may run into thousands. It would not be
practical to keep all these in the UDEBUG thread, therefore the concept of global and
local symbols is available. A globally defined symbol is available to all UDEBUG users
running within that Com-plete until it is deleted. In this way, commonly used control
blocks and/or load modules can be defined globally.

You can define global symbols. However, in the case where one DSECT has changed
while all of the "common" DSECTS available globally have not, you can simply define
the changed DSECT locally. UDEBUG will always use local definitions before
attempting to use global definitions. Therefore, with local symbols, you can effectively
"front end" the globally defined symbols.

UDEBUG Symbol Levels

UEBUG "sees" all symbols as being of a certain level. This level determines whether a
symbol is already defined or not. For example, a load module name is a level 1 type
symbol and therefore no other load module of that name can appear on level one. Of
course the same load module name can exist locally and globally as the global level 1
and the local level 1 are seen as being different.

As an example of how the second level functions, assume two NATURAL V21 linked
nuclei named TSTNUC1 and TSTNUC2. Both of these have a CSECT named
ACMDRIV and both can be defined, as the level 1 names are different. However,
TSTNUC1 could not have the CSECT ACMDRIV linked twice (even though this makes
no sense it is technically possible). In this case, UDEBUG only honours the first
occurrence, and issues an error message about the second. In the same way, level 3
labels can only exist once within the level 1/2 combination, meaning, for example, that
many DSECTs can have the same field name.

Resolution of Symbols

Where a symbol is not equated directly to an address, UDEBUG attempts to find where
the address is. Firstly, UDEBUG searches for an equate for the highest level name for
the symbol. For example, if a CSECT is referenced, UDEBUG attempts to find an
equate for the load module or testran member to which the CSECT relates. If no equate
is found, UDEBUG attempts to find a using statement for the entity. If it is a level 3
field, a level 2 CSECT or DSECT is searched for. In the case of a level 2 DSECT or
CSECT, the section itself is searched for. When symbols cannot be resolved either via an
equate or a using, depending on the circumstances, you are either informed, or the area
displayed relating to the symbol contains the "not resolved" UDEBUG character.

6

OverviewUDEBUG - Application Debugging

As various different modules and/or members used to create symbols may have the same
symbols defined as a result of the LMODULE or READ command, the user has the ability to specify
which particular symbol is being referred to. This is done as follows:

Lev1name.Lev2name

where

Lev1name is the name of the module which was read by the LMODULE
command or the member name read by the READ command.

Lev2name is the symbol you want to reference.

If the symbol is entered on its own and exists more than once, the first occurrence is
taken.

If you wish to always work with the same level 1 name as opposed to having to type in
"Lev1name.Lev2name", if a Test Program name is entered, UDEBUG uses a symbol
related to that program. When it fails to find this, it simply uses the first occurrence as
before.

Addressing Mode

In systems capable of 31 bit addressing, there is always a question as to how to interpret
an address. When a program is on a breakpoint, UDEBUG uses the AMODE in which
the program is running to determine how it should interpret addresses. However, when
the program is not at a breakpoint, all addresses are interpreted as 31 bit addresses.

Implicitly Defined Symbols

To avoid having to set certain standard symbols, UDEBUG sets some defaults at various
points in the execution. The following symbols are set at startup and re-evaluated
periodically to ensure that they are still correct.

DCOMREG COMREG for the Com-plete where UDEBUG is running

DTIB The TIB on which the UDEBUG session is running

Resident
programs

For each resident program defined in the Com-plete system,
UDEBUG sets up an equate for the name of the program, its
address and length. As these are continuously updated,
additions to the residentpage list via the PGM operator
command, or any refreshes of programs should be reflected
almost immediately.

The following symbols are defined as soon as a program is active on the test TID/Level.
They are deleted as soon as the level is freed.

7

UDEBUG - Application DebuggingOverview

DUPCB UPCB of the program being debugged.

THDS Start of thread for the program being debugged.

THDE End of thread for the program being debugged.

THXS Start of thread extension for the program being debugged.

THXE End of thread extension for the program being debugged.

programs The root program name and any modules loaded into the
thread will be set up as equates.

When a breakpoint is reached, UDEBUG deletes and sets the following symbols. If these
names are already used, they are deleted and set as indicated below.

BPPSW Breakpoint PSW address

BPRx Breakpoint register, where ’x’ is ’0’ to ’9’ or ’a’ to ’f’.

BPTIBA The TIB buffer related to the program under test.

Address Expressions

When attempting to address a storage area, UDEBUG can read various types of
expression to enable the Debugger to find the address space. The given expression is
evaluated and the result of that evaluation is used as the absolute address.

Of course, absolute addresses can also be used. All numeric data entered must be
preceded by the hex character to indicate hexadecimal data, or the decimal character,
which indicates a decimal number. Hex is the default. If the value is preceded by the
relocate character, the resultant value is calculated relative to the relocated address as set
by the RELOC command. The decimal, hex and relocate characters and how to set them
are described later in this chapter. The following indications can be used in an
expression.

Hex/decimal
values

Absolute values

Hex/decimal
addresses

Absolute addresses

Hex/decimal
offsets

Relative offsets from a point set by the user

Symbols Globally or privately defined symbols

Arithmethic
operators

Plus (+) and Minus (-) enable the Debugger to add or
subtract from addresses.

Brackets "(’ and
’)"

When brackets are specified, the result of the expression
within the brackets is used as the address of the fullword.
This value is then used in the expression in place of the
brackets and its contents.

8

OverviewUDEBUG - Application Debugging

Note:
The arithmetic operators and brackets mentioned above can be customized to suit your
requirements. This procedure is described later.

Storage Display and Modification

When a breakpoint is set, the program code will contain the UDEBUG SVC. In this case,
the Debugger is not concerned with what is really at this point but what is logically at
this point, that is, the replaced instruction. Therefore, when UDEBUG displays such a
piece of storage, the logical contents of the storage are displayed, that is, the storage is
displayed with the replaced instruction, and not the UDEBUG breakpoint SVC.

By the same token, if you wish to update a piece of storage and a breakpoint exists at the
point where the modification is to take place, UDEBUG handles this by updating the
breakpoint in such a way that the instruction to be exectuted is modified in core. This
becomes apparent when the debugged program leaves the breakpoint.

Modifying thread storage is a little more complex. If UDEBUG is running with no
program active on the test level, absolute addresses are treated as such, that is, if you
enter an address which is contained in a Com-plete thread, you will see the actual data
which is there at that point in time. However, when a program is active on the level, and
you enter an address which is in the program’s thread somewhere, this is resolved
logically in the rolled out image of the thread.

There are cases where you receive the message that the storage is not available. This can
occur if the image of the test program could not be written to the roll buffer; in this case
contact your system programmer. It can also occur if the UDEBUG session was started
on a test level AFTER that level was last active. In this case, Com-plete would not have
known that the test level should have been retained in the roll buffer. This can be
corrected by simply activating the test level once.

Abend of a Test Program

When a program which is being tested abends, the Debugger is notified and can look
into the thread. However, the program cannot currently be restarted after an abend.
When a Com-plete dump is written to the Com-plete SD dataset, the thread will have
been rebuilt to how it logically looked. This means that instructions upon which a
breakpoint is set will have been rebuilt. It also means that bad breakpoints which were
set in the middle of an instruction, for example, will also have been reset. If one of these
bad breakpoints has caused the abend, it will not be obvious from the dump.

If any other dump of storage is taken other than a Com-plete dump, for example, if
applymod 73 is on, the thread will be dumped as it was at the time of the abend, thus all
UDEBUG SVC instructions will still be in place. If confusing results are being obtained,
the problem can be further traced with such a dump as it will reflect the true status of
storage at the time of the abend.

Confirmation Processing

UDEBUG provides full screen interfaces to display any information that the Debugger
may require. In most of these screens, you can update some or all of the areas. When this
occurs, if confirm processing is on, the changed field will be highlighted and protected
and you are asked to confirm the change. If the CONFIRM UDEBUG command is then

9

UDEBUG - Application DebuggingOverview

issued, the updates are made as requested. If anything else is entered, the updates are
forgotten. This facility can be turned on or off using the SET command.

If you want to use Confirm processing, but do not wish to have to go through two input
operations, you can enter the CONFIRM command on the command line when the updates are made. This
is then taken as confirmation that the updates should be done. The easiest way to do this is to set the
CONFIRM command on a PF Key. In this way, the updates can be made and the PF Key pressed to cause
the updates to be accepted. Any changes made inadvertently followed by an enter causes normal confirm

processing to take place.

Restrictions on the use of UDEBUG
There are a number of restrictions and warnings that users must take into account while using UDEBUG.
Some of these situations are actually disallowed by UDEBUG, however, in certain cases, UDEBUG
cannot determine that this is the case and may accept and perform a certain task. However, the results will
then not be as expected.

Execution of Breakpoints

A breakpoint may only be activated if the area of code where the breakpoint has been set is executed.
When a breakpoint is requested by a user for a program, UDEBUG has no way of knowing whether an
instruction will be executed or not as the only way to determine this is to execute the program. Where a
breakpoint has been set and the code not executed, you should first ensure that that section of code is
actually being executed in your application.

It would be possible to at least ensure that the address where the breakpoint is set an instruction. This was
not implemented, as many people use an invalid hex instruction code to cause a program to abend. In
some cases, users may wish to set their breakpoint on this ’instruction’ to take another course of action. It
is also possible that a breakpoint could be set on the address operator of an instruction which could
represent a valid instruction code. This means that it is impossible to accurately determine if the storage at
a location is actually an instruction so to avoid ambiguities whereby sometimes it would fail a request and
other times not, it was decided not to include any checks whatsoever.

Note also that the setting of a breakpoint based on an offset into a module to be loaded into the thread can
only occur when the module is actually loaded into the thread. In the event that the offset does not exist in
the module, this will only be known when the module is loaded and as such, can only be marked as an
invalid offset at that time. If such a breakpoint fails to be triggered, check if the breakpoint has been
flagged as invalid using the BPLIST function.

Instruction Stepping

The instruction step functionality provides the facility to step through a program on an instruction by
instruction basis. For each application program instruction, a breakpoint is triggered which will force the
thread image to be rolled out of the thread. This will cause problems with programs which are event based
whereby they issue a request for which they expect to be posted back when the request is completed.

If the ECB in use is inside the thread, it is likely that the serving posting back the indication that a request
has completed will post the storage location in the actual thread storage area and not the actual ECB in the
user’s rolled out thread copy. This will result in the POST being lost to the expectant application due to
the fact that it’s copy of the ECB is never updated.

10

Restrictions on the use of UDEBUGUDEBUG - Application Debugging

This may also cause other problems for the current occupier of the thread whose storage at the equivalent
location will be overwritten by the post intended for the application program being debugged.

There is no way to know or protect against this. Therefore, application programs of this nature must be
tested with extreme care and no breakpoints either explicit or implicit set between the requesting of a
service and the wait for that service to complete.

UDEBUG User Interface
This section explains the user interface to UDEBUG. It describes the general layout of the screens along
with the available options. The various UDEBUG maps are then shown and described in detail.

UDEBUG Session Startup

UDEBUG must be started with the command

*UDEBUG

UDEBUG sets up the standard user environment as follows:

1. If you are a COM-PASS user, then the current terminal is set up as the Test Terminal if another
user is not testing on it. In the case where another user is testing on the terminal or if you are not a
COM-PASS user, the Test Terminal is set to 0 and you must set it to a valid terminal before testing
can begin.

2. For a COM-PASS user, the next available level is set as the Test Level. This means that the
UDEBUG level plus one is taken to the maximum levels available. When this is exceeded, it wraps
around to take level 1. If a Test Session already exists on this level, or you are a non COM-PASS
user, the Test Level is set to zero.

3. Symbols are set up for the following:

All residentpage programs (symbol names will be the program names)

COMREG (symbol name DCOMREG)

The UDEBUG Session TIB address (symbol name DTIB)

4. The hardcopy TIB for the Testing Terminal is set as the UDEBUG hardcopy device when
available.

5. The UDEBUG nucleus is loaded.

6. The profile named after the your user ID is executed from the default profile DD/DLBL
(COMDBPRF) if the DD/DLBL exists and a profile exists for you. For more details, see the
description of the PROFILE command.

7. Any data entered after the *UDEBUG is assumed to be command data and is passed to the
UDEBUG command handler.

When the above has completed, you will generally be presented with the UDEBUG session information
screen UDB0. This will NOT be the case if data entered along with the *UDEBUG command or a
command in the profile has a different map to be selected. For example, if a DUMP command was

11

UDEBUG - Application DebuggingUDEBUG User Interface

contained in your profile, the first screen you will see is the storage display map UDB1.

The UDEBUG program can optionally be specified as a STARTUPPGM (see the sysparm by that name)
which will cause UDEBUG to be attached with the user ID SYSUSR. You must then add a member name
SYSUSR to the profile dataset which can contain UDEBUG commands to build global symbols that are
available to all UDEBUG users. The profile must always end with the EOJ command to ensure that the
program terminates cleanly. The following example will cause the Com-plete nucleus name COMPLETE
to be read and each CSECT name in the nucleus to be set up as a global symbol.

LMOD COMPLETE * GLOBAL
EOJ

See also the description of the LMODULE command below.

Error and Information Messages

At UDEBUG startup and for various command combinations while in the UDEBUG session, more than
one message may be required. Depending on the number of lines on the terminal, UDEBUG saves each
message to the maximum available lines on the UDEBUG message screen UDB2. When more than one
message is required, the first message is displayed in the UDEBUG map message line with ’+++’ as the
message ID and not ZDB. To see the additional messages, simpy enter MESSAGES on the command line.
If more messages than can fit on the messages screen, this is indicated by the last message on the screen.
All error messages following the last displayed message are discarded.

Program Function Keys

Generally, when ENTER-Key is pressed from a screen, anything typed on the command line is first
interpreted and the relevant command executed. The screen handler then gets control to handle input from
the screen (if any) and the screen is redisplayed with any appropriate messages and/or updates. This of
course will not be the case if any of the commands entered cause the display screen to be changed.

When you press a program function key, either the user-specific keys are used, or the global PF keys for
the system. Global PF keys are maintained by the system adminstrator, while you can add personal PF
keys using the UPROF utility. When a PF key is defined, the data as defined for the PF key is taken as a
command and passed to the UDEBUG command processor. If you press an undefined PF key, an
appropriate message is displayed. The bottom line of the screen displays the first 5 characters of the
command allocated to the PF key. When the PF key is not defined, no text appears under the PF key
header. If the PF key is defined with the "display" option, the contents set for the PF key are displayed on
the UDEBUG command line.

Customizing Characters and Options

For all functions, UDEBUG has default characters and options. However, you can set these as required.
This can be done via your user profile. The following lists the operand name for the SET command which
enables the character to be set together with the standard default for the character. When the operand ON
is given for one of the following options, the default is set when possible. When OFF is specified, the
character is disabled or x’00’ is displayed when the option is a display option.

For the following characters, all of the characters must be unique within the list.

12

Error and Information MessagesUDEBUG - Application Debugging

Operand Default Description

Decchar Z Identifies a numeric string as decimal

Hexchar X Identifies a string as hexadecimal

Relchar #
Identifies a string as relative to the address set by the RELOC
command

Parmdel .
Delimits parameters within an operand, for example,
NATCOM21.ACMDRIV identifies NATCOM21 as the level 1 and
ACMDRIV as the level 2 symbol within an expression

Opdel ,
Operand delimiter. This character or blank must be used to
delimit operands within a UDEBUG command

Cmddel ;
Command delimiter. This character delimits UDEBUG
commands on the same command line

Pntldel (

Pointer left delimiter. This indicates the start of an expression
which is used to get an address. The expression between this pointer
and the Pntrdel delimiter is evaluated and the address
that the expression points to is used as the result, as opposed to the
result of the expression itself

Pntrdel)
Pointer right delimiter. This closes the procedure started by the
Pntrdel character

Taddrid *
When the current top address is to be used in an expression,
this character can be used to avoid the need of retyping the
address in full

Addchar + Indicates that two values are to be added together

Subchar- Indicates that two values are to be subtracted from each other

The following characters do not need to be unique as they are used in a different context to the above
characters.

Operand Default Description

DEFchar *
When a UDEBUG command has more than one positional operand
and you wish to use the default for one or more of the operands, this
character can be used in the operand position

NOTRes -
If UDEBUG attempts to display storage based on a symbol and the
symbol cannot be resolved, this character is used to fill the area

NOTAlloc .
If UDEBUG attempts to display storage and the storage is not
allocated, this character is used to fill the area

NOTACocc =
If UDEBUG attempts to display storage and you cannot access the
storage, this character is used to fill the area

13

UDEBUG - Application DebuggingCustomizing Characters and Options

UDEBUG Screens

General Format

The following is the format of all UDEBUG screens on a 3270 model 2 device (24 lines by 80 columns).
Each of the areas which appear on all screens are described once here.

Message line ...
Time TID -tid" Inst-ID User -userid" Date
 --- -Screen Name" ---
Screen Headings

Command line ...
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Function keys assignments ...

14

UDEBUG ScreensUDEBUG - Application Debugging

Message Line This line is used by error and informational messages. UDEBUG
messages have the format ZDBnnnnn, where nnnnn is a message
number. If UDEBUG has more than one message to display, the
first message is displayed in this line with an identifier of
’+++nnnnn’. This indicates that there are more messages which can
be seen by displaying the Messages Screen.

Time This field contains the time of day in the format HH:MM:SS that
the screen was sent to the terminal.

Tid This fields contains the Terminal ID Number in Com-plete on
which the UDEBUG session is running.

Instid This field contains the Installation ID for the Com-plete running the
UDEBUG session. This ID is set at Com-plete startup by the
INSTALLATION sysparm.

Userid This field contains the user ID of the user logged onto the terminal
runing the UDEBUG session.

Date This field contains the date that the screen was sent to the terminal.
If applymod 61 is not set, the date has the format: MM/DD/YY. If
applymod 61 is set, the date has the format DD.MM.YY.

Screen Name This field contains the title of the UDEBUG screen currently
displayed. Each UDEBUG screen has a title (see the example
screens later in this section).

ID This is the UDEBUG map identifier for the screen currently
displayed. This ID has the format UDBx, where x is an internal
identifier for the screen.

Screen Headings When the individual UDEBUG screens require headings for the
various fields. they are displayed here.

Command Line UDEBUG commands can be entered in this line. When there are no
errors in a screen display, the custor is positioned here.

Function Key
Settings

You can use the globally defined PF keys or a set of PF keys
customized set for yourself. When defined, UDEBUG takes the
first five characters of the command defined for each PF Key and
displays it here. If nothing is defined, nothing is displayed. The
Enter key is always used to enter data.

The UDEBUG Session Information Screen (UDB0)

This screen is displayed as the result of the *UDEBUG call from COM-PASS and contains displays
relevant data related to your UDEBUG session currently being run. You can modify various fields to
change the criterea for the current session.

15

UDEBUG - Application DebuggingThe UDEBUG Session Information Screen (UDB0)

08:22:26 TID 17 COM-5.1. User MBE 04/08/97
 --- Session Information --- UDB0
 Test Information- User Settings---------------- Miscellaneous-------------

 TID 17 MCALL Tracing N Defined Symbols 42
 Luname SHRDAEN Instruction Tracing N Defined Breakpoints 0
 Level 2 Confirm N
 Program Bump Storage N
 Default Character *
 Hardcopy Luname
 Hardcopy TID 15

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Retur Confi Dump Backp Forwp Messa BP Go Recal

Meaning of the information:

Test Information

This column contains data relevant to the Test Session:

TID This is the number of the TID on which the user is testing. If this
contains "0", no Test TID has currently been selected. You can alter
this field only if no breakpoints have been set.

Luname This is the logical unit name of the TID on which you are currently
testing. If no Test TID has been selected, this is blank. You can
alter this field only if no breakpoints have been set.

Level This is the level number on which you are testing. If the Test TID is
running COM-PASS, this is a number from 1 to 9. If the Test TID
is not running COM-PASS, this is "0". You alter this field only if
no breakpoints have been set.

Program This is the name of the program or module which you are testing.
Currently, you use this field to define which symbol to use in cases
where there are duplicates. See the section on UDEBUG Symbols
for more details. This can be altered at any time during the
UDEBUG session.

User Information

This column displays the current settings for various UDEBUG options which you can modify:

16

The UDEBUG Session Information Screen (UDB0)UDEBUG - Application Debugging

MCALL racing This indicates whether MCALL tracing is active for the
TestSession or not. "Y" indicates that it is active and "N" indicates
that it is not active. This can be altered at any time during the
UDEBUG session. However, it will only be effective the next time
a MCALL is issued from the Test Session.

Instruction Tracing This indicates whether UDEBUG instruction tracing is active for
the Test Session or not. "Y" indicates that it is active and "N"
indicates that it is not active. This can be altered at any time
during the UDEBUG session. However, it will only be effective if
the Test Session is on a breakpoint or after the next time the Test
Session reaches a breakpoint.

Confirm This indicates whether UDEBUG Confirm processing is active for
updates. "Y" indicates that it is active and "N" indicates that it is
not active. This can be altered at any time during the UDEBUG
session and is effective immediately.

Bump Storage This indicates whether UDEBUG Bump processing is active for
UDEBUG Screens. "Y" indicates that it is active and "N" indicates
that it is not active. With UDEBUG Bump Processing active, on
screens where there is more than one screen page of information,
if you press ENTER-Key without typing in any data, the following
screen of data is displayed. This can be altered at any time during
the UDEBUG session and is effective immediately.

Hardcopy Luname This is the name of the hardcopy device to which UDEBUG will
route any hardcopy output it may generate as a result of UDEBUG
commands. This can be altered at any time during the UDEBUG
session and is effective immediately.

Hardcopy TID This is the Terminal ID of the hardcopy device to which
UDEBUG will route any hardcopy output it may generate as a
result of UDEBUG commands. This can be altered at any time
during the UDEBUG session and is effective immediately.

Miscellaneous

This column contains any other data relevant for the UDEBUG session. Fields in this column cannot be
updated.

Defined Symbols This is the number of symbols that are locally defined for this
UDEBUG session. This will never exceed the maximum defined
at Com-plete startup by the SYMTAB sysparm.

Defined BreakpointsThis is the number of breakpoints that are currently defined for
this UDEBUG session. It does not include implicit breakpoints or
breakpoints that have been flagged for deletion. It contains
breakpoints that are dormat. Please refer to the section on
Breakpoints for more details.

17

UDEBUG - Application DebuggingThe UDEBUG Session Information Screen (UDB0)

The UDEBUG Dump Storage Screen (UDB1)

This screen is displayed when you press the appropriate PF key (in our example above, PF6). The display
shows your storage in hex and character format with the current breakpoint registers for reference, if the
Test Session is currently on a breakpoint. It also enables you to change this storage.

08:23:44 TID 17 COM-5.1. User MBE 04/08/97
 --- Dump Storage --- UDB1
 Address Relative Hex contents----------------------- Char contents--- BP Regs-
 00000000 040C0000 810B58F0 00000000 80000000 .. a..0 .
 00000010 00FDD030 00000000 070E0000 00000000 .ü. ..
 00000020 078C2000 0001DCF4 078C2000 0001D8B44... .Q.
 00000030 00000000 00000000 070E0000 00000000 ..
 00000040 00000000 00000000 00000000 00FDD030 .ü.
 00000050 00000000 00000000 040C0000 810AD4A8 .. a.My
 00000060 040C0000 00CA5EF0 00080000 87DC51D0 .. .;0 . g..ü
 00000070 00080000 87DC61B0 040C0000 810AF700 . g./... a.7
 00000080 00000000 00011202 000400C8 00040011 H . .
 00000090 0001D000 00052000 00D3D512 00000105 .ü .. LN. ..
 000000A0 00000000 010B2F88 00000000 00000000 ...h
 000000B0 00000000 00000000 0001022F 00FD67E8 Y
 000000C0 28000000 00000000 00000000 00000000 .
 000000D0 00000000 00000000 00000000 00000000
 000000E0 00000000 00000000 00000000 00000000
 000000F0 00000000 00000000 00000000 00000000
 00000100 00000000 00000000 00000000 00000000 Key 0FP

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Retur Confi Dump Backp Forwp Messa BP Go Recal

To cause the first address to be displayed to change, simply enter expressions on the command line or use
cursor positioning. When the cursor is placed in either the Address or Relative line, this line becomes the
top line and the top address is altered accordingly. When the cursor in entered in either of the contents
fields, the byte on which the cursor has been placed becomes the top address for the screen.

Meaning of the information by column heading:

Address

This is the address of the storage which is being displayed. The fields in this column
cannot be altered.

Relative

This is the offset of the storage relative to the relocation address provided via the
RELOC command. If the relocation address is 0, that is, if the relative address is equal to
the actual address, nothing is displayed in this column. The fields in this column cannot
be altered.

Hex Contents

This column contains the hex representation of the storage found at the address indicated
in the Address column. For easier, it is represented as four eight byte areas, each
representing four bytes of storage. When the storage does not exist, the field or portion
of the field is filled with the UDEBUG "not allocated" character (default is ".") and is set
using the SET command.

18

The UDEBUG Dump Storage Screen (UDB1)UDEBUG - Application Debugging

The hex data fields can be modified to cause the storage area itself to be updated by
UDEBUG. In a case where storage does not exist, or only a portion of the four bytes to of a hex field
exist, the field is protected. That means, that the field is only available for update when all four bytes
exist.

Character Contents

This column contains the character representation of the storage found at the address
indicated in the "Address" column. This output is translated according to the utility
output translation table for the terminal. When the storage does not exist, the field or
portion of the field is filled with the UDEBUG "not allocated" character (default is ".")
and can be set using the SET command.

The data can be modified to cause the storage area itself to be updated by UDEBUG. In
a case where storage does not exist, or only a portion of the sixteen bytes exists, the field
is protected. That means that the field is only available for update when all sixteen bytes
exist. Care must be taken when updating storage via this field, because for any update,
all sixteen bytes are written back to the appropriate storage area. When the sixteen bytes
contain non-character output and have been translated, it is possible that invalid hex
values are written back to storage. It is therefore recommended that storage only be
updated via the character representation when all sixteen bytes are valid characters.

BP Regs

This column contains sixteen 8 byte fields which display the hex representation of the
contents of each of the breakpoint registers when the user is on a breakpoint. The top
line represents R0, the next R1, and so on, up to RF. When you are not on a breakpoint,
these fields are blank. These fields are not modifiable. In order to modify the breakpoint
registers, you must go to the Breakpoint Information screen.

Key

This field gives information about the storage key of the page corresponding to the first
address displayed on the screen. There are three positions to this field. The first is always
filled and contains the storage protect key of the storage represented by "0" to "F". The
second position indicates if the storage is fetch protected or not. When the storage is
fetch protected, it contains the character "F", and when it is not fetch protected, it
contains a blank. The third position contains a "P" if the storage area is page protected,
and a blank if it is not. If the storage being displayed on the screen relates to two pages,
the information only relates to the first page displayed.

The UDEBUG Error Messages Screen (UDB2)

When UDEBUG has more than one message to be displayed, only the first is displayed on the message
line. You can then go to this screen by pressing the appropriate PF key (in our example, PF9) to see the
other messages. Each information line on the display contains one message. No input options are available
on this screen.

19

UDEBUG - Application DebuggingThe UDEBUG Error Messages Screen (UDB2)

08:25:03 TID 17 COM-5.1. User MBE 04/08/97
 --- Error Messages --- UDB2

 COMZDB0007 (A) Invalid operand ABC for SET command
 COMZDB0052 (A) RELOC command issued successfully
 COMZDB0006 (A) Missing operands for AT command

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Retur Confi Dump Backp Forwp Messa BP Go Recal

The UDEBUG Breakpoint Information Screen (UDB4)

This screen is used to display information about a breakpoint when the user program is on a breakpoint. It
can be used for information purposes, but also to change the running environment of the Test Program.

COMZDB0030 (A) Currently on breakpoint id ’BP1’ at UCTRL+x00000060
16:46:04 TID 13 COM-5.1. User JPO 02/03/97
 --- Breakpoint Information --- UDB4
Breakpoint data----- BP Contents Data--------------------------------------
Addressing Mode 24 PSW 07CC0000 00309060 FFFFFFFFFFFFFFFF * 90ECD00C18CF41E0
State S R0 00000000 040C0000810B58F0000000008000000000FDC63000
Protect Key C R1 00008038 0000803E0000000161404040404040404040404000
Exception Masks R2 00008000 0034F000006400A000016E48008DC4B8008D429800
 Fixed Point N R3 0021B000 070C00008471091084710802000483700000800000
 Decimal N R4 0000B8B8 078C0000847042DE00000000000551000000800000
 Exponent N R5 0034F820 0000000030C0000100000000000030830100201000
 Significance N R6 00000000 040C0000810B58F0000000008000000000FDC63000
Condition code 0 R7 00000000 040C0000810B58F0000000008000000000FDC63000
 R8 00000000 040C0000810B58F0000000000000000000FDC63000
Id BP1 R9 00000000 040C0000810B58F0000000000000000000FDC63000
Information RA 00000000 040C0000810B58F0000000000000000000FDC63000
 RB 00000000 040C0000810B58F0000000000000000000FDC63000
 RC 00000000 040C0000810B58F0000000008000000000FDC63000
 RD 0030F6C0 00
 RE 0000802E 1F110AC800004C000A0E0000803E00000001614000
 RF 00309000 47F0F060E4C3E3D9D3404040F4F5F040F0F561F100
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Retur Confi Dump Backp Forwp Messa BP Go Recal

20

The UDEBUG Breakpoint Information Screen (UDB4)UDEBUG - Application Debugging

Meaning of the information according to column header:

Breakpoint data

This column contains information relating to the breakpoint on which the test program is currently sitting,
together with information about the state of the user.

Addressing Mode This indicates the address mode that the user program is running in.
Under non-XA capable systems, this is always 24. You can
optionally change the addressing mode when the test program is on a
breakpoint. When this is done, the next time the test program is
dispatched, it will have the new address mode as set by you.

State This indicates the state that the user program is running in.

S Supervisor state

P Problem Program state

You can change this, causing the test program to be in the specified
state the next time it is dispatched.

Protect Key This indicates the protect key that the user program is running in.
This contains a value from "0" to "F", depending on the protect key
found in the PSW. You can change this, causing the test program to
be in the specified set protect key the next time it is dispatched.

Exception Masks These fields indicate whether various exceptions will cause a
program interrupt or not. Possible values:

N if the exception occurs, it is ignored

Y an exception will cause a program interrupt. These
exceptions relate to the four exception masks found
in the PSW. You can change one or more of these
settings to cause the program to run with the
exception condition active or inactive the next time
it is dispatched.

Condition Code These field contains the last condition code set by the test program.
It can be a number from 0 to 3. You can set this condition code to
one of the desired values to cause the program to see a different
condition code the next time it is dispatched.

21

UDEBUG - Application DebuggingThe UDEBUG Breakpoint Information Screen (UDB4)

Id This field contains the identifier of the breakpoint on which the test
program is sitting. For an explicit or user-defined breakpoint, this is
the ID specified on, or generated by the AT command. For implicit
breakpoints such as those for instruction tracing or MCALL tracing,
the following values may be found here:

INSTTRCE Indicates an instruction tracing breakpoint.

BP-MCALL Indicates an MCALL breakpoint.

BP-OSSVC During user program processing, some OS
SVCs area is trapped and satisfied by
Com-plete. When MCALL tracing is active,
these will also cause a breakpoint to occur
before the request is satisfied.

*ABEND** Indicates a user program abend breakpoint.

Information For various breakpoints, additional information is provided in this
field as follows:

BP-MCALL The MCALL request being issued is
displayed.

BP-OSSVC The OS Macro name associated with the
SVC or the SVC number is displayed.

*ABEND** The abend code is displayed.

BP Contents

This column contains the contents of the PSW and registers for the breakpoint as indicated on each line.
The PSW cannot be explicitly changed on this screen. However, alterations in the Breakpoint Data
column or a parameter on the GO command will obviously cause the PSW to be altered. The register
contents can be altered, the changes take effect when the test program is next dispatched.

Data

This column shows the storage at the location pointed to by the PSW or register on the appropriate line.
The register contents are interpreted according to the address mode of the user program. If the address
does not exist, the UDEBUG "not allocated" character is displayed.

The UDEBUG Symbol Display Screen (UDB5)

This screen displays locally and globally defined symbols as a result of the SYMBOLS command. As the
screen must display many different symbols, all the headings do not make sense for all symbols. A
number of examples are therefore given, one for a display of level 1 symbols, one for a display of level 2
symbols and one for a display of level 3 symbols. A description of the fields as they are displayed for the
first example with any differences noted for the subsequent examples.

Apart from the FORWPAGE and BACKPAGE commands, the top line to be displayed can be selected by
placing the cursor anywhere on the desired line and pressing ENTER.

22

The UDEBUG Symbol Display Screen (UDB5)UDEBUG - Application Debugging

Level 1 Example Display:

16:51:03 TID 13 COM-5.1. User JPO 02/03/97
 --- Symbol Display --- UDB5
Type D/Csect Label Equ/Lmod/Memb Scope G
Symbol-- Mult--- Type Lngth- Disp---- Addr---- Contents------------------------
U2DBMAP4 1 EQU 2600 00000000 04CE45D8 47F0F060E4F2C4C2D4C1D7F4F4F5F4 >
U2DBMAP5 1 EQU 6384 00000000 04CE2710 47F0F060E4F2C4C2D4C1D7F5F4F5F4 >
U2DBMAP6 1 EQU 3496 00000000 04D29220 47F0F060E4F2C4C2D4C1D7F6F4F5F4 >
U2DBNXTO 1 EQU 352 00000000 0470A040 47F0F060E4F2C4C2D5E7E3D6F4F5F3 >
U2DBOFF 1 EQU 1024 00000000 04CE14E8 47F0F060E4F2C4C2D6C6C640F4F5F3 >
U2DBOSIO 1 EQU 1136 00000000 00337240 47F0F060E4F2C4C2D6E2C9D6F4F5F3 >
U2DBOSLD 1 EQU 1816 00000000 04CE18E8 47F0F060E4F2C4C2D6E2D3C4F4F5F3 >
U2DBPRLG 1 EQU 264 00000000 047002A8 47F0F060E4F2C4C2D7D9D3C7F4F5F3 >
U2DBPROF 1 EQU 1328 00000000 04715340 47F0F060E4F2C4C2D7D9D6C6F4F5F3 >
U2DBREAD 1 EQU 2752 00000000 04BE1330 47F0F060E4F2C4C2D9C5C1C4F4F5F3 >
U2DBSET 1 EQU 1392 00000000 047003B0 47F0F060E4F2C4C2E2C5E340F4F5F3 >
U2DBSTOR 1 EQU 1384 00000000 04714658 47F0F060E4F2C4C2E2E3D6D9F4F5F3 >
U2PRINT 1 EQU 1104 00000000 00706608 47F0F060E4F2D7D9C9D5E340F4F5F0 >
U2STHD 1 EQU 328 00000000 0003C018 47F0F060E4F2E2E3C8C44040F4F5F0 >
CCOMBLKS 1 MEM 0 00000000 -
COMPLETE 1 LMOD 130 K 00000000 --------------------------------

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Retur Confi Dump Backp Forwp Messa BP Go Recal

Meaning of the information by column heading:

Type

This field can be used to search for a specific type of level 1 object or restrict the display
to certain types of objects. The following values are valid for this field:

Equ Equates

Lmod Load modules

Memb Members

D/Csect

When displaying symbols that have been built as a result of the reading of Testran output
from the assembler, there will be one or more sections defined. You can select which
section is to be displayed by entering the name in this field. The third example in this
section shows an example of selecting the DCOMREG DSECT built from a member
called CCOMBLKS.

Label

This field enables the user to specify criteria which determine the first symbol in a list to
be displayed. You can specify an absolute name, which must exist to be displayed, or a
generic string, by entering a prefix following by an asterisk. For example, if you enter
"ABCDE", the label ABCDE must exist, but if you enter "ABCDE*" in this field, the
first symbol found starting with the letters ABCDE are the first to be displayed.

23

UDEBUG - Application DebuggingThe UDEBUG Symbol Display Screen (UDB5)

Equ/Lmod/Memb

Here you can enter the name of the level 1 symbol with which you want to work. The
display depends on what sort of symbol is first found. For a more restrictive search, you
can specify a type in the TYPE field. For example, if an Equate exists for ABCDE and
ABCDE is also a load module which has been processed via the LMOD command, two
level one symbols will exist. The first may be the Equate and the second the Load
module. If this is entered with no type, a list of equates is displayed starting with
ABCDE. However, if it is entered with the type LMOD, the level two items for the load
module ABCDE are displayed as in the example for LMOD COMPLETE in this section.

Scope

This indicates the scope of the first symbol displayed on the screen. Possible values:

G Global symbol

L Local symbol.

This is purely for information and cannot be changed.

Symbol

This column contains the name of the symbol for which information is being displayed
on the same line.

Mult

This is the multiplication factor. For non-level 3 symbols, it is meaningless and is set to
1. For level 3 symbols, this contains the multiplication factor for the storage type being
displayed. An example of where this is meaningful can be seen on the display for the
DSECT DCOMREG.

Type

This describes the type of symbol being displayed. The following are the possible
mneumonics and what they indicate.

24

The UDEBUG Symbol Display Screen (UDB5)UDEBUG - Application Debugging

MEM Member name read using the READ command.

LMOD Load module read using the LMODULE command.

EQU Equate defined explicitely or implicitely.

USNG Using statement defined by the USING command.

CSCT Code Section (CSECT).

DSCT Data Section (DSECT).

COMN Common Section.

INST Program instruction.

CCW Channel Command Word.

CHAR Character data.

DBCS Double Byte Character Set data.

HEX Hexadecimal data.

BIN Binary data.

FW Fullword data.

HW Halfword data.

FLPS Floating point (short) data.

FLPL Floating point (long) data.

FLPE Floating point (extended) data.

ADDR Address type data.

Y ’Y’ type data.

S ’S’ type data.

VCON V-Constant data.

PD Packed decimal data.

ZD Zoned decimal data.

Length

This shows the length that the data was defined with. For example, a load module’s
length is the total length of all CSECTs in the load module. When then length is greater
than 9999 bytes this is represented in Kbytes, indicated by a K. If it is greater than 9999
KB, it will be represented in Mega Bytes and indicated by an M.

Disp

This shows the displacement from the base area. For a field in a DSECT or CSECT, it is
the displacement from the section. For a module within a load module, it is the
displacement from the first module.

25

UDEBUG - Application DebuggingThe UDEBUG Symbol Display Screen (UDB5)

Addr

When the symbol can be resolved, this contains the address where the symbol starts. If it
cannot be resolved, this field is blank.

Contents

When the symbol can be resolved and the address exists, the contents of the area
described by the symbol are displayed here in as meaningful a fashion as possible. For
symbols that are longer than the area available, a ’>’ sign indicates that there is more
data to be displayed. In the case of data fields, they are displayed according to their type.
For example, a CHAR-type field is displayed in character, a HEX type field in
hexadecimal and so on. When there is no longical display format for a type, a
hexadecimal dispaly is given. In the case of data fields with a multiplier greater that one,
only the first iteration is displayed. When the symbol cannot be resolved, the UDEBUG
"not resolved" character (Default is "-") is displayed. If the symbol is resolved but the
storage not found, the "not allocated" symbol is displayed.

Level 2 Example Display:

The following is an example of a display of level 2 symbols. In this
case, the symbols were defined by issuing the LMODULE command
for the module COMPLETE and requesting that the symbols be
available globally.

16:52:40 TID 13 COM-5.1. User JPO 02/03/97
 - Symbol Display - UDB5
Type LMOD D/Csect Label Equ/Lmod/Memb COMPLETE Scope G
Symbol- Mult - Type Lngth- Disp - Addr- - Contents- -
TLCOMREG 1 CSCT 4096 00000000 00008000 .0 . . .>. .D. ..q..=&.yFü .>
TLVSAM 1 CSCT 7100 0000F888 00017888 .00%TLVSAM 450 05/17/91 / 21.4>
TLAMVTAM 1 CSCT 8192 00009710 00011710 TLAMVTAM.0ü..0D..0I..0.D. ¿..0.>
TLAMVTEX 1 CSCT 4360 000165F0 0001E5F0 TLAMVTEX450 05/17/91 / 21.06.0.>
TLAMVDEV 1 CSCT 4096 00012320 0001A320 .00-TLAMVDEV450 05/17/91 / 21.0>
TLAMVTRC 1 CSCT 5010 0000B710 00013710 .00-TLAMVTRC450 05/17/91 / 21.0>
TLAMMODS 1 CSCT 240 00007B18 0000FB18 DTAB .üy .*h ..h >
TLSRDKAC 1 CSCT 564 0001EAE8 00026AE8 .00-TLSRDKAC450 05/17/91 / 21.3>
TLSRCTRL 1 CSCT 3730 0001DAD8 00025AD8 .0¿.TLSRCTRL450 05/17/91 / 21.3>
TLOCOLOG 1 CSCT 3669 0001AAC0 00022AC0b.&..M ..+q .>
TLDSKCHR 1 CSCT 1078 0000E808 00016808 .<.<.< 3330 .._ g>
TLSRROLE 1 CSCT 628 0001EFD8 00026FD8 .00-TLSRROLE450 05/18/91 / 00.5>
TLMSCHED 1 CSCT 1784 0000E010 00016010 .00-TLMSCHED450 05/17/91 / 21.1>
TLMSGCQ 1 CSCT 1454 000137A0 0001B7A0&.ü.&üü>
TLMSDQCQ 1 CSCT 1012 000133A8 0001B3A8 .00-TLMSDQCQ450 05/17/91 / 21.1>
TLOPADAB 1 CSCT 2770 0001C738 00024738 .00-TLOPADAB450 05/17/91 / 21.3>

Enter-PF1- PF2 - PF3 - PF4 - PF5 - PF6 - PF7 - PF8 - PF9 - PF10 -PF11- -PF12 -
 Help Retur Confi Dump Backp Forwp Messa BP Go Recal

For an explanation of the fields, see the example of a level 1 symbol
display above.

Level 3 Example Display

The following is an example of a display of level 3 symbols. In this
case, the symbols were defined by issuing the READ command for the
member CCOMBLKS and requesting that the symbols be available
globally. The CCOMBLKS member was created by assembling a
module containing COPY statements for various Com-plete control
blocks and specifying the TEST assembler parameter to cause it to

26

The UDEBUG Symbol Display Screen (UDB5)UDEBUG - Application Debugging

generate TESTRAN symbols.

16:54:49 TID 13 COM-5.1. User JPO 02/03/97
 --- Symbol Display --- UDB5
Type MEM D/Csect DCOMREG Label Equ/Lmod/Memb CCOMBLKS Scope G
Symbol-- Mult--- Type Lngth- Disp---- Addr---- Contents------------------------
ATIBTAB 1 ADDR 4 00000000 00008000 0034F000
CNOTIBS 1 ADDR 2 00000004 00008004 0064
CTIBLEN 1 ADDR 2 00000006 00008006 00A0
CQSTART 1 VCON 4 00000008 00008008 00016E48
APVT 1 ADDR 4 0000000C 0000800C 008DC4B8
ATCSTCB 1 ADDR 4 00000010 00008010 008D4298
ATCSSBCB 1 ADDR 4 00000014 00008014 04717E50
CRESPGML 1 ADDR 4 00000018 00008018 04A8C6E0
ATCWSCAN 0 FW 4 0000001C 0000801C
ATCWS 1 VCON 4 0000001C 0000801C 00009004
CF4 1 ADDR 4 00000020 00008020 00000004
ATCWE 1 VCON 4 00000024 00008024 0000905C
CNOTHRDS 1 ADDR 2 00000028 00008028 0004
CNOTASKS 1 ADDR 2 0000002A 0000802A 0007
COSEXIT 1 INST 6 0000002C 0000802C 0A03
CEOJ 0 HW 2 0000002E 0000802E

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Retur Confi Dump Backp Forwp Messa BP Go Recal

For an explanation of the fields, see the example of a level 1 symbol
display above.

The UDEBUG Breakpoint List Screen (UDB6)

This screen displays a list of breakpoints which have been defined for the UDEBUG session. To display
breakpoints, use the command BPLIST. If no breakpoints are defined, this screen is empty.

Apart from the FORWPAGE and BACKPAGE commands, the top line to be displayed can be selected by
placing the cursor anywhere on the desired line and pressing ENTER.

COMZDB0030 (A) Currently on breakpoint id ’BP2’ at UCTRL+x00000060
16:48:54 TID 13 COM-5.1. User JPO 02/03/97
 --- Breakpoint List --- UDB6
 Number- ID------ Status- Module-- Program- Offset Exec’d- Maxexec Preexec
 5 BP5 Reset UCTRL UCTRL 000080 0 9999999 0
 4 BP4 Reset $THREAD$ 002B70 0 9999999 0
 3 BP3 Set UCTRL U2CTAI 000000 0 9999999 0
 2 BP2 Active UCTRL UCTRL 000060 1 9999999 0
 1 BP1 Set UCTRL UCTRL 000000 1 9999999 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Retur Confi Dump Backp Forwp Messa BP Go Recal

27

UDEBUG - Application DebuggingThe UDEBUG Breakpoint List Screen (UDB6)

Meaning of the information according to column header:

Number

This is the number assigned to the breakpoint when it is defined with the AT command.
Each defined breakpoint is allocated a sequential number which is unique within that
particular UDEBUG session. If the breakpoint is an implicit breakpoint, this field shows
"0".

ID

This is the ID of the breakpoint as specified, or defaulted on the AT command. For
implicit breakpoints, this ID indicates the purpose of the breakpoint.

Status

This field indicates the status of the breakpoint as follows:

Reset The breakpoint has been defined but is not currently set. This
occurs when breakpoints are to be set in thread storage as
Com-plete must first rollin the test session to physically set the
breakpoint.

Set The breakpoint has been defined and the UDEBUG SVC has been
set in the appropriate place.

Active The test program is currently sitting on the breakpoint.

Dormant The breakpoint has been defined. However, due to the termination
of the test program, it could not be automatically set again. To
reactivate the breakpoint, simply issue an AT command for the
same breakpoint.

Deleted The breakpoint has been deleted logically. However, it could not be
physically deleted. This can occur in a number of cases, for
example, when the test program is sitting on the breakpoint. In this
case, the breakpoint is physically deleted when the test program is
next activated. In other cases, physical deletion will take place as
soon as is possible.

Invalid The breakpoint has been defined. However, when it was defined it
was not possible to determine that it was valid. This occurs for
breakpoints set within the test program’s thread. A breakpoint is
marked as invalid if it is defined as an offset from a program and
the program is not that large, or if it is defined in a storage area in
thread and the storage area has not been acquired by the test
program.

Module

This is the name of the module within which the breakpoint is set or is to be set when it
can be determined. When the string "$THREAD" appears in this column, it indicates that
the breakpoint has been requested in thread at an offset from the start of the thread.
When the breakpoint is set, if it exists within a module, the breakpoint will be updated to

28

The UDEBUG Breakpoint List Screen (UDB6)UDEBUG - Application Debugging

reflect the module name which will then be seen here.

Program

Where module is made up of one or more progams, the LMODULE command can be
issed to build symbols for the various CSECTs contained in the module. When this is
available, the name of the CSECT in the module where the breakpoint is set is displayed
here.

Offset

This is the offset from the module or program where the breakpoint is set. If a program
name exists, it is the offset from the program. If only a Module name exists, it is the
offset from the module. If the module name is ’$THREAD$’, it is the offset from the
start of the user program area in thread.

Exec’d

This is the number of times that the breakpoint has been executed.

Maxexec

This is the maximum number of times that the breakpoint should be executed. After this
limit is reached, the breakpoint no longer causes the test program to give control to the
debugger.

Preexec

This is the number of times a breakpoint should be executed without giving control to
the debugger. After it has executed this number of times, the debugger receives control.

UDEBUG Commands

Entering Commands

More than one command can be entered at a time by using the command delimeter (default is semi-colon
";"). Each operand for a command must be separated by a blank or the operand delimiter (default is
comma ","). The commands are processed in turn from left to right. As PF keys and profiles are passed
through the same command processor, this applies equally when defining them. All commands and
operands can be abbreviated to a short form that makes them unique. In the following descriptions, the
upper case characters indicate the minimum which must be entered to uniquely identify a command or
option.

Recalling Commands

Each command is entered is stored in a UDEBUG buffer. This means that the commands can be recalled
using the UDEBUG command RECALL. When first entered, the RECALL command redisplays the last
command entered. If entered again immediately, it displays the command entered previous to that and so
on. The location pointer for RECALL processing is reset as soon as a command other than RECALL is
entered. A maximum of 30 commands are buffered, the oldest is lost when the buffer fills. Please note
also that this processing also applies to PF keys and Profiles.

29

UDEBUG - Application DebuggingUDEBUG Commands

Command Description

In the following description of the commands, the shaded command format indicates the shortest possible
abbreviation of the command keyword. Keywords typed in capitals must be entered as is. Parameter
keywords in italics must be substituted with valid values.

AT - Set a Breakpoint

This command enables you to explicitly set a breakpoint. Before this command can be
issued, a valid Test Terminal and Level must have been set.

AT offset/addr program bpid execute-no ignore-n0

Where:

offset/addr Determines where the breakpoint will be set. This expression is
first checked to determine if it is within a residentpage program.
If so, any program name entered is ignored. If it is not within a
residentpage program, it is taken to be an offset into breakpoint
program name.

program If an offset is provided for the breakpoint name, a program name
is required from which this offset is taken. If program is not
supplied, or the default character is specified, a previously set
Test Program is used. If this is not set, then the breakpoint cannot
be set and an error message is issued. If a program name is
established, the program must be cataloged to Com-plete.

bpid Optional. This is an eight character ID which you can supply to
identify the breakpoint. This is displayed whenever the
breakpoint is referenced in any way. If no ID is specified, the
breakpoint ID defaults to "BPnnnnnn", where nnnnnn is the
zoned representation of the internal breakpoint number.

execute-noOptional. The number of times the breakpoint is to be executed,
after which time it will become dormant (defined but ignored
whenever hit). This must be a number less than x’7FFFFFFF’. If
it is not specified, it will default to x’7FFFFFFF’, which in
practice means that it is executed every time it is hit.

ignore-no Optional. The number of times the breakpoint is to be ignored
before being taken. This must be a number less than
x’7FFFFFFF’. If this is not specified, the breakpoint is taken the
first time that it is hit.

Examples:

1. AT 0 UCTRL

This causes a breakpoint to occur when the program UCTRL is started on the test
level.

30

Command DescriptionUDEBUG - Application Debugging

2. AT RESPGM+50 * RESBP

This adds a breakpoint with an ID of "RESBP" which is hit when a program on
the test level hits the instruction at offset x50 into the resident program "RESPGM".

Notes:

1. When an error in the parameter value occurs, the breakpoint is NOT set, even if
the parameter is an optional one.

2. If an offset/program combination is provided, it cannot be ensured at the time it
is defined that the offset is valid. This can only be established when the program
is loaded for the Test Session ,when it can be verified if firstly the module length
can contain the offset and secondly that a valid instruction exists at this location.
If it is found to be invalid, the breakpoint entry is flagged as having an invalid
offset, which will be seen if the breakpoint is displayed.

3. If a new address and/or amode is specified, the amode in which the user program
is to be dispatched must be consistent with the restart address. For example, a 31
bit mode address cannot be specified if the restart amode is specified or defaults
to 24 bit mode.

4. The amode parameter only applies to operating systems that are capable of
running in 31 bit mode.

5. Breakpoints can only be deleted by the Terminal/Level combination which added
them.

6. When a UDEBUG session terminates either normally or abnormally, all
breakpoints set by that session are removed.

7. If the EOJ command is contained in a profile, it will cause immediate termination
of the execution of the profile AND of your session.

8. Global symbols that need to be defined each time Com-plete comes up can be
defined using this functionality. If UDEBUG is started as a Com-plete
STARTUPPGM, it will have a user ID of SYSUSR. If a profile name of
SYSUSR exists on the COMDBPRF defined dataset, this will be executed when
the program is attached. To avoid an abend from this task when it finishes, the
EOJ command must be the last command in the profile.

9. When the TESTRAN outout is created in a PDS, the assembler generally
punches out the module text records following them. For this reason, the READ
command simply reads the member until it finds the first non-TESTRAN record
when it finishes. If the command finishes correctly the number of TESTRAN
records read will be indicated in the message.

10. Global symbols can be defined at startup using the SYSUSR profile as explained
for the PROFILE command.

BACKPAGE - Page Backward on the Current Screen

On screens where information can be scrolled, this command causes the display to scroll
backward one logical page. On screens where scrolling is not necessary, it has no effect.

BA

Note:
This command is usually assigned to PF7.

31

UDEBUG - Application DebuggingCommand Description

BP - Show Breakpoint Information

This command causes the breakpoint information screen to become the current screen. If
the user program is not on a breakpoint, an error message is issued and the command
rejected.

BP

Note:
This command is usually assigned to PF10.

BPLIST - Give a Breakpoint List

This command causes the Breakpoint List screen to become the current screen.

BPL

C - Relocate the Top of Screen Address (24 bit mode)

This command causes UDEBUG to take the fullword pointed to by the top address on
the current screen, clear the high order byte and make this address the new top address.

C

CONFIRM - Confirm a Previously Entered Update

When an update is made in full screen mode, and confirm processing is active, the
screen processor highlights and protects the changed fields, and requests that you
confirm your changes. This command indicates that you wish the changes to take place.
If this command is NOT the next command issued after such an update request,
UDEBUG clears any record of the update request.

CO

DELETE - Delete Symbols

With this command, you can delete a symbol defined using the EQUATE, LMODULE
or READ UDEBUG commands.

DE type name g|l

Where:

type Is Equate, Lmodule or Member depending on what is to be
deleted. Note that when Lmodule or Member is specified, all
symbols created for that symbol will also be deleted.

name Is the name of the Equate, Lmodule or Member which you wish
to delete.

g|l Optional. Specify either "g" for global delete of the symbol, or "l"
for local delete. Local is the default.

32

Command DescriptionUDEBUG - Application Debugging

Example

1. DE Equate MYPOINT

This command causes the equate MYPOINT to be deleted.

2. DE Lmodule MYLOAD

This command causes the load module MYLOAD and all CSECT symbols
relating to this load module to be deleted.

DUMP - Dump Storage

This causes the dump storage display to become the current screen. If no parameter is
used, the previous top address from the last DUMP command or DUMP processing is
used.

DU expression

Where:

expressionis an expression determining the new address to be used as the
top of screen.

Example

DU DCOMREG

This causes the data around the the address where COMREG is found to be displayed.

EOJ - Terminate the UDEBUG Session

This command causes the UDEBUG session to be terminated. All breakpoints owned by
this TID/Level combination are either deleted or flagged for deletion.

EOJ

EQUATE - Define Private Symbols

With this command, you can define symbols within your private symbol table area.

EQ name expression length

Where:

name Required. The name of the symbol. Maximum length is 8
characters.

expression Optional. The expression indicating where the symbol should be
equated to. If this is not specified, the address at the top of the
screen address is taken by default.

length Optional. The length of the symbol being defined. If this is not
specified, the symbol length is zero.

33

UDEBUG - Application DebuggingCommand Description

Example

1. EQ MYCOM DCOMREG

This causes the symbol MYCOM to be defined with a pointer to the address
described by DCOMREG which is the address of Com-plete’s COMREG area.

2. EQ PSA 0

This causes the symbol PSA to be defined with a pointer to the address 0.

FORWPAGE - Page Forward on the Current Screen

On screens where information takes up more than one screen page, this command scrolls
the display forward one logical page. On screens where scrolling is not necessary, it has
no effect.

FOR

Note:
This command is usually assigned to PF8.

GO - Restart a Breakpointed User Program

When the program being debugged is sitting on a breakpoint, this command causes it to
be restarted at the next instruction. A new restart address can also be supplied as a
parameter to the GO command, as well as a new address mode for the user.

GO expression amode

Where:

expression Optional. The expression indicating the address where the
program to be debugged is to restart. If this is not specified, the
program is restarted at the breakpointed instruction in the
AMODE it was in when the breakpoint was hit.

amode Optional. Possible options are 31 or 24 to force the program to be
restarted in the appropriate addressing mode. If this is not
specified, the AMODE the program was in when the breakpoint
was taken is used.

Example

GO *+8 24

This causes execution to continue at the current address at the top left of the screen plus
8 bytes in 24 bit mode.

Notes:

1. If a new address and/or amode is specified, the amode in which the user program
is to be dispatched must be consistent with the restart address. For example, a 31
bit mode address cannot be specified if the restart amode is specified or defaults

34

Command DescriptionUDEBUG - Application Debugging

to 24 bit mode.
2. The amode parameter only applies to operating systems that are capable of

running in 31 bit mode.
3. Breakpoints can only be deleted by the Terminal/Level combination which added

them.
4. When a UDEBUG session terminates either normally or abnormally, all

breakpoints set by that session are removed.
5. If the EOJ command is contained in a profile, it will cause immediate termination

of the execution of the profile AND of your session.
6. Global symbols that need to be defined each time Com-plete comes up can be

defined using this functionality. If UDEBUG is started as a Com-plete STARTUPPGM, it will have a user
ID of SYSUSR. If a profile name of SYSUSR exists on the COMDBPRF defined dataset, this will be
executed when the program is attached. To avoid an abend from this task when it finishes, the EOJ

command must be the last command in the profile.
7. When the TESTRAN outout is created in a PDS, the assembler generally

punches out the module text records following them. For this reason, the READ command simply reads
the member until it finds the first non-TESTRAN record when it finishes. If the command finishes

correctly the number of TESTRAN records read will be indicated in the message.
8. Global symbols can be defined at startup using the SYSUSR profile as explained

for the PROFILE command.
HELP or ? - Provide UDEBUG Help

This will cause the Com-plete help utility to be called to display the available UDEBUG
help information.

HE?

Note:
This command is usually assigned to PF1.

LMODULE - Read a Load Module and Equate its CSECTs

Under MVS and FACOM, when a load module is created, a list of CSECTs contained in
the load module are placed in formatted records at the start of the module with details of
offsets and lengths. The LMODULE command causes UDEBUG to read these records
and set up symbols, indicating the offset and length of the CSECT names. When the
original module name is resolved either via an EQUATE or using the CSECTs within,
the module will be also be addressible.

LM name dd scope

Where:

35

UDEBUG - Application DebuggingCommand Description

name Required. The name of the load module to be read.

dd Optional. The name of DD which should be used to locate the
appropriate module. If this is not specified, the default COMPLIB will
be used.

scope Possible options:

LOCAL the symbols will only be set up for the UDEBUG
session issuing the READ command. When this
session is terminated, the symbols are lost.

GLOBAL the symbols defined as a result are available to all
users of UDEBUG under that Com-plete, and
remain for the lifetime of the Com-plete region.

Example

LM COMPLETE * GLOBAL

This will cause the Com-plete nucleus module COMPLETE to be read from the current
default LOADDD (COMPLIB, unless you change it), and a CSECT equate set up for
each CSECT found in the load module. The resultant symbols are available globally.

MESSAGES - Show Current List of Messages

This causes the UDEBUG messages screen to become the current screen. You can issue
this command if there is more than one message to be displayed.

ME

Note:
This command is usually assigned to PF9.

OFF - Remove Breakpoints

This command deletes a breakpoint, or flags a breakpoint for deletion, indicating that
deletion has been deferred for some reason. In the latter case, the system ensures that the
breakpoint is physically deleted at the appropriate time.

OFF bpid|ALL

Where:

bpid This is either the eight byte breakpoint ID for the breakpoint, or the
internal numberic ID by which the breakpoint to be removed is
known.

ALL All breakpoints are to be removed.

36

Command DescriptionUDEBUG - Application Debugging

Example

OFF MYBPID

This causes the breakpoint ID "MYBPID" to be deleted.

Notes:

1. Breakpoints can only be deleted by the Terminal/Level combination which added
them.

2. When a UDEBUG session terminates either normally or abnormally, all
breakpoints set by that session are removed.

3. If the EOJ command is contained in a profile, it will cause immediate termination
of the execution of the profile AND of your session.

4. Global symbols that need to be defined each time Com-plete comes up can be
defined using this functionality. If UDEBUG is started as a Com-plete
STARTUPPGM, it will have a user ID of SYSUSR. If a profile name of
SYSUSR exists on the COMDBPRF defined dataset, this will be executed when
the program is attached. To avoid an abend from this task when it finishes, the
EOJ command must be the last command in the profile.

5. When the TESTRAN outout is created in a PDS, the assembler generally
punches out the module text records following them. For this reason, the READ
command simply reads the member until it finds the first non-TESTRAN record
when it finishes. If the command finishes correctly the number of TESTRAN
records read will be indicated in the message.

6. Global symbols can be defined at startup using the SYSUSR profile as explained
for the PROFILE command.

PROFILE - Execute a Profile

Profiles must be added as members of a PDS, and this PDS must be allocated to
Com-plete with a specific DD name. Profile members can contain any valid UDEBUG
command that can be entered on the UDEBUG command line. At UDEBUG startup, the
PROFILE command is issued implicitly for you to enable you to customize the
environment automatically.

PRO name dd

Where:

name Optional. The name of the profile to be executed. This must exist as
a PDS member in the dataset pointed to by the applicable DD name.
If this is not specified, your user ID is used as the profile name.

dd Optional. The name of DD which should be used to locate the
appropriate profile member. If this is not specified, the default
COMDBPRF is used.

37

UDEBUG - Application DebuggingCommand Description

Example

PROfile TESTPROF TESTDD

This causes each record in the member TESTPROF from the DD/DLBL name TESTDD
to be read and passed in turn to the UDEBUG command processor.

Notes:

1. If the EOJ command is contained in a profile, it will cause immediate termination
of the execution of the profile AND of your session.

2. Global symbols that need to be defined each time Com-plete comes up can be
defined using this functionality. If UDEBUG is started as a Com-plete
STARTUPPGM, it will have a user ID of SYSUSR. If a profile name of
SYSUSR exists on the COMDBPRF defined dataset, this will be executed when
the program is attached. To avoid an abend from this task when it finishes, the
EOJ command must be the last command in the profile.

3. When the TESTRAN outout is created in a PDS, the assembler generally
punches out the module text records following them. For this reason, the READ
command simply reads the member until it finds the first non-TESTRAN record
when it finishes. If the command finishes correctly the number of TESTRAN
records read will be indicated in the message.

4. Global symbols can be defined at startup using the SYSUSR profile as explained
for the PROFILE command.

READ - Read TESTRAN Symbols

The various assemblers can produce what is called TESTRAN output for the module
they are assembling when the TEST parameter is specified. TESTRAN records contain
the details of all CSECTs and DSECTs in the assembled module. UDEBUG can read
these from the applicable DD name and build tables containing the applicable
information. In this way, DSECTs can be displayed online and it is hoped to be able to
disassemble a module to provide the most readable output possible.

REA name dd scope

Where:

name Required. The name of the member to be read containing the
TESTRAN records.

dd Optional. The name of DD which should be used to locate the
appropriate member. If this is not specified, the default COMDBTXT
is used.

scope Possible options:

LOCAL the symbols will only be set up for the UDEBUG
session issuing the READ command. When this
session is terminated, the symbols are lost.

GLOBAL the symbols defined as a result are available to all
users of UDEBUG under that Com-plete, and
remain for the lifetime of the Com-plete region.

38

Command DescriptionUDEBUG - Application Debugging

Example

MYSYMS * GLOBAL

This causes the member MYSYMS to be read from the current default TEXTDD
(COMDBTXT unless you change it) and the Testran records interpreted from that member. The resultant

symbols are available globally.

Notes:

1. When the TESTRAN outout is created in a PDS, the assembler generally
punches out the module text records following them. For this reason, the READ
command simply reads the member until it finds the first non-TESTRAN record
when it finishes. If the command finishes correctly the number of TESTRAN
records read will be indicated in the message.

2. Global symbols can be defined at startup using the SYSUSR profile as explained
for the PROFILE command.

RECALL - Display the Command Entered Last on the Command Line

This command causes the command entered last to be redisplayed on the command line.
When entered repeatedly without intervening commands, it will cause UDEBUG to
progressively display the previous commands to the last command displayed.

REC

Note:
This command is usually assigned to PF12.

RELOC - Set the Relocation Base Address

During dump and disassembly processing, you can see the actual address of displayed
data, together with a relative address. By default these are equal. However, this
command enables you to set the base address against which the relative address will be
calculated.

Note:
This is only effective when on the DUMP storage screen or the DISASSEMBLY screen.
Also, a seperate relocation factor can be set for the DISASSEMBLY screen without
effecting the DUMP screen and vice versa.

REL expresion

Where:

expression Optional. The expression indicating the address to which the
current address should be made relative. If this is not specified,
the top address for the screen is taken by default.

39

UDEBUG - Application DebuggingCommand Description

Example

RELOC DCOMREG

This causes all relative address to be displayed/used relative to Com-plete’s COMREG
address.

SESSINFO - Show the Current Session Information

This causes the UDEBUG session information screen to be displayed.

SES

SET - Set Various UDEBUG Options

The SET command enables you to set options and various character and default values
for the UDEBUG session. This facility is provided primarily to enable you to customize
your UDEBUG session via your Profile.

SET option name ON|OFF value

Where:

option The option to be turned on or off. Valid options are:

MTRACE MCALL tracing

ITRACE Instruction tracing

BUMP bumping of screens when ENTER is
pressed without data being entered

CONFIRM Confirm processing

40

Command DescriptionUDEBUG - Application Debugging

name The name of a default character or value which is to be
changed. The characters and values that can be changed are:

PROFDD Default profile DD/DLBL name for
PROFILE command.

TEXTDD Default text DD/DLBL name for
READcommand.

LOADDD Default load DD/DLBL name for
LMODULE command.

DEFCHAR Character to indicate default for
positional operands for a command.

NOTRES Character to indicate unresolved storage.

NOTALLOC Character to indicate unallocated storage.

NOACCESS Character to indicate unavailable storage.

DECCHAR Character to indicate decimal values.

HEXCHAR Character to indicate hexadecimal values.

RELCHAR Character to indicate relative values.

TADDRID Character to represent top address on
screen.

CMDDEL Character to delimit commands in a line.

OPDEL Character to delimit operands in a
command.

PARMDEL Character to delimit parameters in an
operand.

PNTLDEL Pointer indicator left delimiter.

PNTRDEL Pointer indicator right delimiter.

ADDCHAR Character to indicate addition.

SUBCHAR Character to indicate subtraction.

ON/OFF Indicates if the specified option is to be turned on or off. ON is
the default. If ON is specified for a character or value, the
default is set. OFF is invalid for default values. However, for
character defaults, OFF causes the character not to be used.

value The character or string to which the character or value should
be set.

41

UDEBUG - Application DebuggingCommand Description

Examples

SET ITRACE Sets instruction tracing on

SET ITRACE
OFF

Sets instruction tracing on

SET
DECCHAR Y

Sets the character to identify decimal to "Y"

SET TEXTDD Sets the default Text DD/DLBL name to the default
(COMDBTXT).

SYMBOLS - Show the Symbol Display Screen

This causes the UDEBUG symbol display/list screen to become the current screen.

SY

X - Relocate the Top of Screen Address (31 bit mode)

This command causes UDEBUG to take the fullword pointed to by the top address on
the current screen, clear the high order bit and make this address the new top address.

X

42

Command DescriptionUDEBUG - Application Debugging

	UDEBUG - Application Debugging
	Overview
	
	Warning About Breakpoints

	Restrictions on the use of UDEBUG
	Execution of Breakpoints
	Instruction Stepping

	UDEBUG User Interface
	UDEBUG Session Startup
	Error and Information Messages
	Program Function Keys
	Customizing Characters and Options
	UDEBUG Screens
	General Format

	The UDEBUG Session Information Screen †UDB0‡
	Test Information
	User Information
	Miscellaneous

	The UDEBUG Dump Storage Screen †UDB1‡
	The UDEBUG Error Messages Screen †UDB2‡
	The UDEBUG Breakpoint Information Screen †UDB4‡
	Breakpoint data
	BP Contents
	Data

	The UDEBUG Symbol Display Screen †UDB5‡
	Level 1 Example Display:

	The UDEBUG Breakpoint List Screen †UDB6‡

	UDEBUG Commands
	Entering Commands
	Recalling Commands
	Command Description
	Examples:
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Examples

